An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices

نویسندگان

  • Paul Kirchner
  • Pierre-Alain Fouque
چکیده

In this paper, we study the Learning With Errors problem and its binary variant, where secrets and errors are binary or taken in a small interval. We introduce a new variant of the Blum, Kalai and Wasserman algorithm, relying on a quantization step that generalizes and fine-tunes modulus switching. In general this new technique yields a significant gain in the constant in front of the exponent in the overall complexity. We illustrate this by solving within half a day a LWE instance with dimension n = 128, modulus q = n2, Gaussian noise α = 1/( √ n/π log2 n) and binary secret, using 228 samples, while the previous best result based on BKW claims a time complexity of 274 with 260 samples for the same parameters. We then introduce variants of BDD, GapSVP and UniqueSVP, where the target point is required to lie in the fundamental parallelepiped, and show how the previous algorithm is able to solve these variants in subexponential time. Moreover, we also show how the previous algorithm can be used to solve the BinaryLWE problem with n samples in subexponential time 2(ln 2/2+o(1))n/ log logn. This analysis does not require any heuristic assumption, contrary to other algebraic approaches; instead, it uses a variant of an idea by Lyubashevsky to generate many samples from a small number of samples. This makes it possible to asymptotically and heuristically break the NTRU cryptosystem in subexponential time (without contradicting its security assumption). We are also able to solve subset sum problems in subexponential time for density o(1), which is of independent interest: for such density, the previous best algorithm requires exponential time. As a direct application, we can solve in subexponential time the parameters of a cryptosystem based on this problem proposed at TCC 2010.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Modulus Switching for the BKW Algorithm on LWE

Some recent constructions based on LWE do not sample the secret uniformly at random but rather from some distribution which produces small entries. The most prominent of these is the binary-LWE problem where the secret vector is sampled from {0, 1}∗ or {−1, 0, 1}∗. We present a variant of the BKW algorithm for binary-LWE and other small secret variants and show that this variant reduces the com...

متن کامل

On the complexity of the BKW algorithm on LWE

This work presents a study of the complexity of the Blum-Kalai-Wasserman (BKW) algorithm when applied to the Learning with Errors (LWE) problem, by providing refined estimates for the data and computational effort requirements for solving concrete instances of the LWE problem. We apply this refined analysis to suggested parameters for various LWE-based cryptographic schemes from the literature ...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

On the asymptotic complexity of solving LWE

We provide for the first time an asymptotic comparison of all known algorithms for the search version of the Learning with Errors (LWE) problem. This includes an analysis of several lattice-based approaches as well as the combinatorial BKW algorithm. Our analysis of the lattice-based approaches defines a general framework, in which the algorithms of Babai, Lindner-Peikert and several pruning st...

متن کامل

Parallel Implementation of BDD Enumeration for LWE

One of the most attractive problems for post-quantum secure cryptographic schemes is the LWE problem. Beside combinatorial and algebraic attacks, LWE can be solved by a lattice-based Bounded Distance Decoding (BDD) approach. We provide the first parallel implementation of an enumeration-based BDD algorithm that employs the Lindner-Peikert and Linear Length pruning strategies. We ran our algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015